
Kami
Release main

James P. Howard, II <james.howard@jhu.edu>

Jan 23, 2023

CONTENTS

1 Overview 3
1.1 Design Objectives . 3

Index 53

i

ii

Kami, Release main

Kami is Agent-Based Modeling in Modern C++.

CONTENTS 1

https://github.com/JHUAPL/kami/actions/workflows/build-main.yml
https://github.com/JHUAPL/kami/actions/workflows/build-develop.yml
https://kami.readthedocs.io/en/main/
https://github.com/JHUAPL/kami/releases
https://doi.org/10.5281/zenodo.6975259

Kami, Release main

2 CONTENTS

CHAPTER

ONE

OVERVIEW

Agent-based models (ABMs) are models for simulating the actions of individual actors within a provided environment
to understand the behavior of the agents, most individually and collectively. ABMs are particularly suited for addressing
problems governed by nonlinear processes or where there is a wide variety of potential responses an individual agent
may provide depending on the environment and behavior of other agents. Because of this, ABMs have become powerful
tools in both simulation and modeling, especially in public health and ecology, where they are also known as individual-
based models. ABMs also provide support in economic, business, robotics, and many other fields.

1.1 Design Objectives

Kami provides agent-based modeling modern C++. The objectives in writing Kami are that it be lightweight, memory-
efficient, and fast. It should be possible to develop a simple working model in under one hour of C++ development
time. Accordingly, the platform is modeled on the Mesa library in Python, which itself was inspired by the MASON
library in Java.

Many ABM platforms are designed around interaction and real time observation of the agent dynamics. Kami does
not provide a visualization interface. Instead, Kami is meant to be used for ABMs requiring many runs with different
starting conditions. Accordingly, Kami is single-threaded and multiple cores should be taken advantage of through
multiple parallel runs of the supervising model.

1.1.1 Installation

Requirements

The core of Kami, libkami, has no requirements beyond a modern C++ compiler and neargye-semver/0.3.0.
However, both the examples provided and the unit tests provided rely on three additional C++ packages. The full list
is:

• cli11/1.9.1

• gtest/cci.20210126

• neargye-semver/0.3.0”

• spdlog/1.8.5

• fmt/7.1.3

Google Test provides a unit testing framework. CLI11 provides a command line interface for each of the utilities
that makeup the examples. spdlog provides a uniform output interface. Coupled with a command line option to set
the output level, spdlog allows the unit tests and example programs to provide variable output levels depending on the
users needs. Finally, fmt is required by spdlog for simple and easy string formatting.

3

https://mesa.readthedocs.io
https://cs.gmu.edu/~eclab/projects/mason/
https://github.com/google/googletest
https://cliutils.github.io/CLI11/
https://github.com/gabime/spdlog
https://fmt.dev/

Kami, Release main

Compiling

To compile and test locally in kami/build:

git clone https://github.com/k3jph/kami.git
cd kami
conan install -if build .
cmake -B build -DBUILD_SHARED_LIBS:BOOL=FALSE
cmake --build build
cmake --build build --target test

Conan Installation (Local)

To install via Conan:

conan create . kami/develop

1.1.2 About Agent-Based Models

Agent-based models (ABM) are a type of computational model used to simulate the behavior of autonomous agents
within a system. These agents can be individuals, groups, organizations, or other entities that interact with one another
and with their environment.

One of the key features of ABMs is that they focus on the micro-level interactions between individual agents, rather
than aggregating data to study macro-level phenomena. This allows for the examination of complex behaviors that
emerge from the interactions between agents, such as the spread of a disease or the formation of social networks.

ABMs are often used in fields such as economics, sociology, and biology to study the behavior of individuals and
groups. They can also be used to simulate the effects of different policies or interventions on a system.

In order to create an ABM, the researcher must first define the agents and their characteristics, such as their behavior,
beliefs, and goals. They must also define the rules of interaction between the agents and their environment. Once these
parameters are set, the model can be run to simulate the behavior of the agents over time.

ABMs are a powerful tool for understanding complex systems, but they also have their limitations. Because they focus
on micro-level interactions, they may not accurately capture macro-level phenomena. Additionally, they often require
a significant amount of computational resources and can be difficult to validate.

Overall, agent-based models are a valuable tool for understanding the behavior of complex systems and the emergence
of complex behaviors from the interactions between individuals. However, it is important to use them in conjunction
with other methods to fully understand the system being studied.

1.1.3 Tutorial

Kami’s interface is heavily influenced by Mesa’s interface. However, by being written in C++, Kami runs substantially
faster. This allows for faster runs and more runs within a fixed amount of time. The advantage here is that an agent-based
model (ABM) built on the Kami platform is better suited for statistical and Monte Carlo approaches to modelling.

4 Chapter 1. Overview

https://conan.io/
https://mesa.readthedocs.io

Kami, Release main

Model Form

Kami-based models have five key components:

1. Agents, which are objects representing the actors within the model

2. Populations, which are collections of Agents

3. Domains, which provide a representation of “physical” space the Agent inhabits

4. Schedulers, which provide a representation of “time” within the model

5. Model, which are objects connecting Populations, Domains, and Schedulers

In general, a model should have one scheduler, one domain, and some number of agents. However, it would not be
impossible to have more than one scheduler or more than one domain. Because this is implemented in C++, your agents
should subclass Agent and your model should subclass model. The schedulers and domains are sufficient as is for their
purposes though custom schedulers and domains are not unreasonable.

A Minimal ABM

The minimal ABM starts with the simplest possible agent. Here, we create a class called MinimalAgent:

1 class MinimalAgent : public kami::Agent {
2 public:
3 kami::AgentID step(std::shared_ptr<kami::Model> model) override {
4 return this->get_agent_id();
5 }
6 };

An Agent, and its subclasses, will automatically inherit an AgentID, which is the unique identifier for the session. The
only explicit requirement on the Agent subclass is a step() method that accepts a shared_ptr to a Model and it must
return the Agent’s AgentID. Obviously, an Agent should do something useful before returning.

The second component is MinimalModel:

1 class MinimalModel: public kami::Model {
2 public:
3 MinimalModel() {
4 auto sched = std::make_shared<kami::SequentialScheduler>();
5 set_scheduler(sched);
6

7 auto pop = std::make_shared<kami::Population>();
8 set_population(pop);
9

10 for (auto i = 0; i < 10; i++) {
11 auto new_agent = std::make_shared<MinimalAgent>();
12 pop->add_agent(new_agent);
13 }
14 }
15 };

The MinimalModel performs some important tasks that important to do during the setup or soon thereafter. In the
constructor, first, a scheduler is created. The SequentialScheduler is the simplest scheduler and has no configu-
ration needed. Using set_scheduler(), part of the Model class, the scheduler is associated with this model. Second, a
Population is created and associated with this model with the set_population() method.

After this, the constructor initializes 10 MinimalAgents and adds them to the population.

1.1. Design Objectives 5

Kami, Release main

1 int main() {
2 auto model = std::make_shared<MinimalModel>();
3

4 for (int i = 0; i < 10; i++)
5 model->step();
6

7 return 0;
8 }

The last part is our main() function. It creates the MinimalModel then executes its step() method 10 times. The step()
method, by default, calls the step() method of the scheduler. In the case of the SequentialScheduler, it loops over
all the Agent instances in the Population and executes the associated step() method of each Agent.

That is it. It is the simplest minimal model that can be created using the Kami platform. However, for a basis, it is
likely better to use the starter model, included in the examples directory.

1.1.4 Library API

Class Hierarchy

File Hierarchy

Full API

Namespaces

Namespace kami

Contents

• Namespaces

• Classes

• Enums

• Functions

• Typedefs

Namespaces

• Namespace kami::error

6 Chapter 1. Overview

Kami, Release main

Classes

• Class Agent

• Class AgentID

• Class Constants

• Class Coord

• Class Domain

• Class Grid1D

• Class Grid2D

• Class GridCoord

• Class GridCoord1D

• Class GridCoord2D

• Class GridDomain

• Class Model

• Class MultiGrid1D

• Class MultiGrid2D

• Class Population

• Class RandomScheduler

• Class Reporter

• Class ReporterAgent

• Class ReporterModel

• Class Scheduler

• Class SequentialScheduler

• Class SoloGrid1D

• Class SoloGrid2D

• Class StagedAgent

• Class StagedScheduler

Enums

• Enum GridDistanceType

• Enum GridNeighborhoodType

1.1. Design Objectives 7

Kami, Release main

Functions

• Function kami::get_version

Typedefs

• Typedef kami::Position

Namespace kami::error

Contents

• Classes

Classes

• Class AgentNotFound

• Class LocationInvalid

• Class LocationUnavailable

• Class OptionInvalid

• Class ResourceNotAvailable

Classes and Structs

Class Agent

• Defined in file_include_kami_agent.h

Inheritance Relationships

Derived Types

• public kami::ReporterAgent (Class ReporterAgent)

• public kami::StagedAgent (Class StagedAgent)

8 Chapter 1. Overview

Kami, Release main

Class Documentation

class Agent
A superclass for all agents.

All agents should subclass the Agent class. At a minimum, subclasses must implement the step() function, to
execute a single time step for each agent.

See also:

ReporterAgent, StagedAgent

Subclassed by kami::ReporterAgent, kami::StagedAgent

Public Functions

AgentID get_agent_id() const
Get the Agent’s AgentID.

Returns the AgentID

virtual AgentID step(std::shared_ptr<Model> model) = 0
Execute a time-step for the agent.

This function should step the agent instance. Any activities that the agent should perform as part of its time
step should be in this function.

Parameters model – a reference copy of the model

Returns a copy of the AgentID

Friends

friend bool operator==(const Agent &lhs, const Agent &rhs)
Compare if two Agents are the same Agent.

Subclasses of Agent may chose to extend this operator to tighten the restrictions on the comparison.

Note: This does not compare that two Agent instances are identical. Accordingly, this can be used to
compare two instances of the same Agent at different points in its time stream.

Parameters

• lhs – is the left-hand side of the equality test.

• rhs – is the right-hand side of the equality test.

Returns true is they are equal and false if not.

1.1. Design Objectives 9

Kami, Release main

friend bool operator!=(const Agent &lhs, const Agent &rhs)
Compare if two Agents are not the same Agent.

Subclasses of Agent may chose to extend this operator to tighten the restrictions on the comparison.

Note: This does not compare that two Agent instances are identical. Accordingly, this can be used to
compare two instances of the same Agent at different points in its time stream.

Parameters

• lhs – is the left-hand side of the equality test.

• rhs – is the right-hand side of the equality test.

Returns true is they are not equal and false if they are.

Class AgentID

• Defined in file_include_kami_agent.h

Class Documentation

class AgentID
A unique identifier for each Agent.

The unique identifier permits ordering to allow AgentIDs to be used as keys for std::map. The unique identifier
is unique for the session, however, AgentIDs are not guaranteed to be unique from session-to-session.

See also:

Agent

Public Functions

AgentID()

Constructs a new unique identifier.

std::string to_string() const
Convert the identifier to a human-readable string.

Returns a human-readable form of the AgentID as std::string.

10 Chapter 1. Overview

Kami, Release main

Friends

friend bool operator==(const AgentID &lhs, const AgentID &rhs)
Test if two AgentID instances are equal.

Parameters

• lhs – is the left-hand side of the equality test.

• rhs – is the right-hand side of the equality test.

Returns true is they are equal and false if not.

friend bool operator!=(const AgentID &lhs, const AgentID &rhs)
Test if two AgentID instances are not equal.

Parameters

• lhs – is the left-hand side of the equality test.

• rhs – is the right-hand side of the equality test.

Returns true is they are not equal and false if they are.

friend bool operator<(const AgentID &lhs, const AgentID &rhs)
Test if one AgentID is less than another.

Due to the way AgentID instances are used internally, the AgentID must be orderable. The < operator
provides a basic ordering sufficient for std::map.

Parameters

• lhs – is the left-hand side of the ordering test.

• rhs – is the right-hand side of the ordering test.

Returns true if lhs is “less than” rhs as determined by the underlying implementation of the
AgentID.

friend std::ostream &operator<<(std::ostream &lhs, const AgentID &rhs)
Output an AgentID to the specified output stream.

The form of the output will be the same as that produced by the to_string() member function.

Parameters

• lhs – is the stream to output the AgentID to

• rhs – is the AgentID to output

Returns the output stream for reuse

Class Constants

• Defined in file_include_kami_kami.h

1.1. Design Objectives 11

Kami, Release main

Class Documentation

class Constants
A catalog of handy constants, mostly useful for seeding a random number generator.

Public Static Attributes

static constexpr auto ADAMS_CONSTANT = 42u
Life, the Universe, and Everything!

static constexpr auto JENNYS_NUMBER = 8675309u
Jenny, I’ve got your number.

static constexpr auto JENNYS_CONSTANT = 867.530901981
$(7^(e - 1/e) - 9) * pi^2$

Class Coord

• Defined in file_include_kami_domain.h

Inheritance Relationships

Derived Type

• public kami::GridCoord (Class GridCoord)

Class Documentation

class Coord
Provides a coordinate system for each Domain.

The coordinate system must be able to produce a human-readable version of the coordinates given. For instance,
an integer grid in two dimensions would provide standard Descartes coordinates like (0, 0) for the origin, or (2, 3)
for the position that is two units “up” and three units to the “right” of the origin. Implementation of a coordinate
system is left up to the user, though there are several established systems provided.

See also:

GridCoord

Subclassed by kami::GridCoord

12 Chapter 1. Overview

Kami, Release main

Public Functions

virtual std::string to_string() const = 0
Convert the coordinate to a human-readable string.

Returns a human-readable form of the Coord as std::string.

Friends

friend std::ostream &operator<<(std::ostream &lhs, const Coord &rhs)
Output a Coord to the specified output stream.

The form of the output will be the same as that produced by the to_string() member function.

Parameters

• lhs – is the stream to output the Coord to

• rhs – is the Coord to output

Returns the output stream for reuse

Class Domain

• Defined in file_include_kami_domain.h

Inheritance Relationships

Derived Type

• public kami::GridDomain (Class GridDomain)

Class Documentation

class Domain
Provides an environment for the agents to participate in.

Implementations of virtual environments are expected to subclass Domain.

Subclassed by kami::GridDomain

Protected Functions

Domain() = default
Constructor.

Making this constructor protected makes the class abstract without having to create any virtual functions.

1.1. Design Objectives 13

Kami, Release main

Class AgentNotFound

• Defined in file_include_kami_error.h

Inheritance Relationships

Base Type

• public logic_error

Class Documentation

class AgentNotFound : public logic_error
Agent was not found.

Public Functions

inline explicit AgentNotFound(const char *s)
Constructor.

Parameters s – text description of the exception

inline explicit AgentNotFound(const std::string &s)
Constructor.

Parameters s – text description of the exception

Class LocationInvalid

• Defined in file_include_kami_error.h

Inheritance Relationships

Base Type

• public domain_error

Class Documentation

class LocationInvalid : public domain_error
Location specified is invalid.

See also:

LocationUnavailable

14 Chapter 1. Overview

Kami, Release main

Public Functions

inline explicit LocationInvalid(const char *s)
Constructor.

Parameters s – text description of the exception

inline explicit LocationInvalid(const std::string &s)
Constructor.

Parameters s – text description of the exception

Class LocationUnavailable

• Defined in file_include_kami_error.h

Inheritance Relationships

Base Type

• public domain_error

Class Documentation

class LocationUnavailable : public domain_error
Location specified is unavailable.

See also:

LocationInvalid

Public Functions

inline explicit LocationUnavailable(const char *s)
Constructor.

Parameters s – text description of the exception

inline explicit LocationUnavailable(const std::string &s)
Constructor.

Parameters s – text description of the exception

1.1. Design Objectives 15

Kami, Release main

Class OptionInvalid

• Defined in file_include_kami_error.h

Inheritance Relationships

Base Type

• public invalid_argument

Class Documentation

class OptionInvalid : public invalid_argument
The option given is not valid at this time.

Public Functions

inline explicit OptionInvalid(const char *s)
Constructor.

Parameters s – text description of the exception

inline explicit OptionInvalid(const std::string &s)
Constructor.

Parameters s – text description of the exception

Class ResourceNotAvailable

• Defined in file_include_kami_error.h

Inheritance Relationships

Base Type

• public logic_error

Class Documentation

class ResourceNotAvailable : public logic_error
The resource specified is not available at this time.

16 Chapter 1. Overview

Kami, Release main

Public Functions

inline explicit ResourceNotAvailable(const char *s)
Constructor.

Parameters s – text description of the exception

inline explicit ResourceNotAvailable(const std::string &s)
Constructor.

Parameters s – text description of the exception

Class Grid1D

• Defined in file_include_kami_grid1d.h

Inheritance Relationships

Base Type

• public kami::GridDomain (Class GridDomain)

Derived Types

• public kami::MultiGrid1D (Class MultiGrid1D)

• public kami::SoloGrid1D (Class SoloGrid1D)

Class Documentation

class Grid1D : public kami::GridDomain
A one-dimensional grid where each cell may contain agents.

The grid is linear and may wrap around in its only dimension.

See also:

MultiGrid1D

See also:

SoloGrid1D

Subclassed by kami::MultiGrid1D, kami::SoloGrid1D

1.1. Design Objectives 17

Kami, Release main

Public Functions

explicit Grid1D(unsigned int maximum_x, bool wrap_x = false)
Constructor.

Parameters

• maximum_x – [in] the length of the grid.

• wrap_x – [in] should the grid wrap around on itself.

virtual AgentID add_agent(AgentID agent_id, const GridCoord1D &coord) = 0
Place agent on the grid at the specified location.

Parameters

• agent_id – [in] the AgentID of the agent to add.

• coord – [in] the coordinates of the agent.

Returns false if the agent is not placed at the specified location, otherwise, true.

AgentID delete_agent(AgentID agent_id)
Remove agent from the grid.

Parameters agent_id – [in] the AgentID of the agent to remove.

Returns the AgentID of the Agent deleted

AgentID delete_agent(AgentID agent_id, const GridCoord1D &coord)
Remove agent from the grid at the specified location.

Parameters

• agent_id – [in] the AgentID of the agent to remove.

• coord – [in] the coordinates of the agent.

Returns the AgentID of the Agent deleted

AgentID move_agent(AgentID agent_id, const GridCoord1D &coord)
Move an agent to the specified location.

Parameters

• agent_id – [in] the AgentID of the agent to move.

• coord – [in] the coordinates of the agent.

bool is_location_empty(const GridCoord1D &coord) const
Inquire if the specified location is empty.

Parameters coord – [in] the coordinates of the query.

Returns true if the location has no Agents occupying it, false otherwise.

bool is_location_valid(const GridCoord1D &coord) const
Inquire if the specified location is valid within the grid.

Parameters coord – [in] the coordinates of the query.

Returns true if the location specified is valid, false otherwise.

18 Chapter 1. Overview

Kami, Release main

GridCoord1D get_location_by_agent(const AgentID &agent_id) const
Get the location of the specified agent.

Parameters agent_id – [in] the AgentID of the agent in question.

Returns the location of the specified Agent

std::shared_ptr<std::set<AgentID>> get_location_contents(const GridCoord1D &coord) const
Get the contents of the specified location.

Parameters coord – [in] the coordinates of the query.

Returns a pointer to a set of AgentIDs. The pointer is to the internal copy of the agent list at
the location, therefore, any changes to that object will update the state of the gird. Further,
the pointer should not be deleted when no longer used.

bool get_wrap_x() const
Inquire to whether the grid wraps in the x dimension.

Returns true if the grid wraps, and false otherwise

std::shared_ptr<std::unordered_set<GridCoord1D>> get_neighborhood(AgentID agent_id, bool
include_center) const

Return the neighborhood of the specified Agent.

Parameters

• agent_id – [in] the AgentID of the agent in question

• include_center – [in] should the center-point, occupied by the agent, be in the list.

Returns an unordered_set of GridCoord1D that includes all of the coordinates for all adjacent
points.

std::shared_ptr<std::unordered_set<GridCoord1D>> get_neighborhood(const GridCoord1D &coord, bool
include_center) const

Return the neighborhood of the specified location.

Parameters

• coord – [in] the coordinates of the specified location.

• include_center – [in] should the center-point, occupied by the agent, be in the list.

Returns an unordered_set of GridCoord1D that includes all of the coordinates for all adjacent
points.

unsigned int get_maximum_x() const
Get the size of the grid in the x dimension.

Returns the length of the grid in the x dimension

1.1. Design Objectives 19

Kami, Release main

Protected Functions

GridCoord1D coord_wrap(const GridCoord1D &coord) const
Automatically adjust a coordinate location for wrapping.

Parameters coord – [in] the coordinates of the specified location.

Returns the adjusted coordinate wrapped if appropriate.

Protected Attributes

const std::vector<GridCoord1D> directions = {GridCoord1D(1), GridCoord1D(-1)}
Direction coordinates.

This can be used for addition to coordinates. Direction 0 is the first direction clockwise from “vertical.”
In this case, it can be on a vertically-oriented column, upwards, or to the right on a horizontally-oriented
column. Then the additional directions are enumerated clockwise.

std::unique_ptr<std::unordered_multimap<GridCoord1D, AgentID>> _agent_grid
An unordered_set containing the AgentIDs of all agents assigned to this grid.

std::unique_ptr<std::map<AgentID, GridCoord1D>> _agent_index
A map containing the grid location of each agent.

Class Grid2D

• Defined in file_include_kami_grid2d.h

Inheritance Relationships

Base Type

• public kami::GridDomain (Class GridDomain)

Derived Types

• public kami::MultiGrid2D (Class MultiGrid2D)

• public kami::SoloGrid2D (Class SoloGrid2D)

20 Chapter 1. Overview

Kami, Release main

Class Documentation

class Grid2D : public kami::GridDomain
A two-dimensional grid where each cell may contain agents.

The grid is linear and may wrap around in its only dimension.

See also:

MultiGrid2D

See also:

SoloGrid2D

Subclassed by kami::MultiGrid2D, kami::SoloGrid2D

Public Functions

explicit Grid2D(unsigned int maximum_x, unsigned int maximum_y, bool wrap_x = false, bool wrap_y =
false)

Constructor.

Parameters

• maximum_x – [in] the length of the grid in the first dimension

• maximum_y – [in] the length of the grid in the second dimension

• wrap_x – [in] should the grid wrap around on itself in the first dimension

• wrap_y – [in] should the grid wrap around on itself in the second dimension

virtual AgentID add_agent(AgentID agent_id, const GridCoord2D &coord) = 0
Place agent on the grid at the specified location.

Parameters

• agent_id – [in] the AgentID of the agent to add.

• coord – [in] the coordinates of the agent.

Returns false if the agent is not placed at the specified location, otherwise, true.

AgentID delete_agent(AgentID agent_id)
Remove agent from the grid.

Parameters agent_id – [in] the AgentID of the agent to remove.

Returns false if the agent is not removed, otherwise, true.

AgentID delete_agent(AgentID agent_id, const GridCoord2D &coord)
Remove agent from the grid at the specified location.

Parameters

• agent_id – [in] the AgentID of the agent to remove.

• coord – [in] the coordinates of the agent.

Returns false if the agent is not removed, otherwise, true.

1.1. Design Objectives 21

Kami, Release main

AgentID move_agent(AgentID agent_id, const GridCoord2D &coord)
Move an agent to the specified location.

Parameters

• agent_id – [in] the AgentID of the agent to move.

• coord – [in] the coordinates of the agent.

bool is_location_empty(const GridCoord2D &coord) const
Inquire if the specified location is empty.

Parameters coord – [in] the coordinates of the query.

Returns true if the location has no Agents occupying it, false otherwise.

bool is_location_valid(const GridCoord2D &coord) const
Inquire if the specified location is valid within the grid.

Parameters coord – [in] the coordinates of the query.

Returns true if the location specified is valid, false otherwise.

virtual GridCoord2D get_location_by_agent(const AgentID &agent_id) const
Get the location of the specified agent.

Parameters agent_id – [in] the AgentID of the agent in question.

Returns the location of the specified Agent

std::shared_ptr<std::set<AgentID>> get_location_contents(const GridCoord2D &coord) const
Get the contents of the specified location.

Parameters coord – [in] the coordinates of the query.

Returns a pointer to a set of AgentIDs. The pointer is to the internal copy of the agent list at
the location, therefore, any changes to that object will update the state of the gird. Further,
the pointer should not be deleted when no longer used.

bool get_wrap_x() const
Inquire to whether the grid wraps in the x dimension.

Returns true if the grid wraps, and false otherwise

bool get_wrap_y() const
Inquire to whether the grid wraps in the y dimension.

Returns true if the grid wraps, and false otherwise

virtual std::shared_ptr<std::unordered_set<GridCoord2D>> get_neighborhood(AgentID agent_id, bool
include_center,
GridNeighborhoodType
neighborhood_type) const

Return the neighborhood of the specified Agent.

See also:

NeighborhoodType

Parameters

• agent_id – [in] the AgentID of the agent in question.

22 Chapter 1. Overview

Kami, Release main

• neighborhood_type – [in] the neighborhood type.

• include_center – [in] should the center-point, occupied by the agent, be in the list.

Returns a set of GridCoord2D that includes all of the coordinates for all adjacent points.

std::shared_ptr<std::unordered_set<GridCoord2D>> get_neighborhood(const GridCoord2D &coord, bool
include_center,
GridNeighborhoodType
neighborhood_type) const

Return the neighborhood of the specified location.

See also:

NeighborhoodType

Parameters

• coord – [in] the coordinates of the specified location.

• neighborhood_type – [in] the neighborhood type.

• include_center – [in] should the center-point, occupied by the agent, be in the list.

Returns a set of GridCoord2D that includes all of the coordinates for all adjacent points.

unsigned int get_maximum_x() const
Get the size of the grid in the x dimension.

Returns the length of the grid in the x dimension

unsigned int get_maximum_y() const
Get the size of the grid in the y dimension.

Returns the length of the grid in the `xy dimension

Protected Functions

GridCoord2D coord_wrap(const GridCoord2D &coord) const
Automatically adjust a coordinate location for wrapping.

Parameters coord – [in] the coordinates of the specified location.

Returns the adjusted coordinate wrapped if appropriate.

Protected Attributes

const std::vector<GridCoord2D> directions_vonneumann = {GridCoord2D(0, 1), GridCoord2D(1, 0),
GridCoord2D(0, -1), GridCoord2D(-1, 0)}

von Neumann neighborhood coordinates

This can be used for addition to coordinates. Direction 0 is the first direction clockwise from “vertical.”
Then the additional directions are enumerated clockwise.

1.1. Design Objectives 23

Kami, Release main

const std::vector<GridCoord2D> directions_moore = {GridCoord2D(0, 1), GridCoord2D(1, 1),
GridCoord2D(1, 0), GridCoord2D(1, -1), GridCoord2D(0, -1), GridCoord2D(-1, -1), GridCoord2D(-1, 0),
GridCoord2D(-1, 1)}

Moore neighborhood coordinates.

This can be used for addition to coordinates. Direction 0 is the first direction clockwise from “vertical.”
Then the additional directions are enumerated clockwise.

std::unique_ptr<std::unordered_multimap<GridCoord2D, AgentID>> _agent_grid
A map containing the AgentIDs of all agents assigned to this grid.

std::unique_ptr<std::map<AgentID, GridCoord2D>> _agent_index
A map containing the grid location of each agent.

Class GridCoord

• Defined in file_include_kami_grid.h

Inheritance Relationships

Base Type

• public kami::Coord (Class Coord)

Derived Types

• public kami::GridCoord1D (Class GridCoord1D)

• public kami::GridCoord2D (Class GridCoord2D)

Class Documentation

class GridCoord : public kami::Coord
An abstract for gridded coordinates.

All gridded coordinates are expected to subclass GridCoord .

Subclassed by kami::GridCoord1D, kami::GridCoord2D

24 Chapter 1. Overview

Kami, Release main

Public Functions

virtual double distance(std::shared_ptr<Coord> &p) const = 0
Find the distance between two points.

Find the distance between two points using the specified metric.

However, the coordinate class is not aware of the properties of the GridDomain it is operating on. Ac-
cordingly, if the direct path is measured, without accounting for and toroidal wrapping of the underlying
GridDomain.

Parameters p – the point to measure the distance to

Returns the distance as a double

Class GridCoord1D

• Defined in file_include_kami_grid1d.h

Inheritance Relationships

Base Type

• public kami::GridCoord (Class GridCoord)

Class Documentation

class GridCoord1D : public kami::GridCoord
One-dimensional coordinates.

Public Functions

explicit GridCoord1D(int x_coord)
Constructor for one-dimensional coordinates.

int x() const
Return the x coordinate.

virtual std::string to_string() const override
Convert the coordinate to a human-readable string.

Returns a human-readable form of the Coord as std::string.

virtual double distance(std::shared_ptr<Coord> &p) const override
Find the distance between two points.

Find the distance between two points using the specified metric. There are three options provided by the
GridDistanceType class. However, of the three distance types provided, all provide the same result so
the value is ignored and the single result is returned.

However, the coordinate class is not aware of the properties of the Grid1D it is operating on. Accordingly,
if the direct path is measured, without accounting for and toroidal wrapping of the underlying Grid1D.

1.1. Design Objectives 25

Kami, Release main

Parameters p – the point to measure the distance to

Returns the distance as a double

Friends

friend bool operator==(const GridCoord1D &lhs, const GridCoord1D &rhs)
Test if two coordinates are equal.

friend bool operator!=(const GridCoord1D &lhs, const GridCoord1D &rhs)
Test if two coordinates are not equal.

friend std::ostream &operator<<(std::ostream &lhs, const GridCoord1D &rhs)
Output a given coordinate to the specified stream.

inline friend GridCoord1D operator+(const GridCoord1D &lhs, const GridCoord1D &rhs)
Add two coordinates together.

inline friend GridCoord1D operator-(const GridCoord1D &lhs, const GridCoord1D &rhs)
Subtract one coordinate from another.

inline friend GridCoord1D operator*(const GridCoord1D &lhs, double rhs)
Multiply a coordinate by a scalar.

If any component of the resulting value is not a whole number, it is truncated following the same rules as
int.

inline friend GridCoord1D operator*(double lhs, const GridCoord1D &rhs)
Multiply a coordinate by a scalar.

If any component of the resulting value is not a whole number, it is truncated following the same rules as
int.

Class GridCoord2D

• Defined in file_include_kami_grid2d.h

Inheritance Relationships

Base Type

• public kami::GridCoord (Class GridCoord)

Class Documentation

class GridCoord2D : public kami::GridCoord
Two-dimensional coordinates.

26 Chapter 1. Overview

Kami, Release main

Public Functions

GridCoord2D(int x_coord, int y_coord)
Constructor for two-dimensional coordinates.

int x() const
Get the coordinate in the first dimension or x.

int y() const
Get the coordinate in the second dimension or y.

virtual std::string to_string() const override
Convert the coordinate to a human-readable string.

Returns a human-readable form of the Coord as std::string.

virtual double distance(std::shared_ptr<Coord> &p) const override
Find the distance between two points.

Find the distance between two points using the specified metric.

However, the coordinate class is not aware of the properties of the Grid2D it is operating on. Accordingly,
if the direct path is measured, without accounting for and toroidal wrapping of the underlying Grid2D.

Parameters p – the point to measure the distance to

Returns the distance as a double

double distance(std::shared_ptr<GridCoord2D> &p, GridDistanceType distance_type =
GridDistanceType::Euclidean) const

Find the distance between two points.

Find the distance between two points using the specified metric. There are three options provided by the
GridDistanceType class.

However, the coordinate class is not aware of the properties of the Grid2D it is operating on. Accordingly,
if the direct path is measured, without accounting for and toroidal wrapping of the underlying Grid2D.

Parameters

• p – the point to measure the distance to

• distance_type – specify the distance type

Returns the distance as a double

Protected Functions

inline double distance_chebyshev(std::shared_ptr<GridCoord2D> &p) const
Find the distance between two points using the Chebyshev metric.

Parameters p – the point to measure the distance to

Returns the distance as a double

inline double distance_euclidean(std::shared_ptr<GridCoord2D> &p) const
Find the distance between two points using the Euclidean metric.

Parameters p – the point to measure the distance to

Returns the distance as a double

1.1. Design Objectives 27

Kami, Release main

inline double distance_manhattan(std::shared_ptr<GridCoord2D> &p) const
Find the distance between two points using the Manhattan metric.

Parameters p – the point to measure the distance to

Returns the distance as a double

Friends

friend bool operator==(const GridCoord2D&, const GridCoord2D&)
Test if two coordinates are equal.

friend bool operator!=(const GridCoord2D&, const GridCoord2D&)
Test if two coordinates are not equal.

friend std::ostream &operator<<(std::ostream&, const GridCoord2D&)
Output a given coordinate to the specified stream.

inline friend GridCoord2D operator+(const GridCoord2D &lhs, const GridCoord2D &rhs)
Add two coordinates together.

inline friend GridCoord2D operator-(const GridCoord2D &lhs, const GridCoord2D &rhs)
Subtract one coordinate from another.

inline friend GridCoord2D operator*(const GridCoord2D &lhs, const double rhs)
Multiply a coordinate by a scalar.

If any component of the resulting value is not a whole number, it is truncated following the same rules as
int.

inline friend GridCoord2D operator*(const double lhs, const GridCoord2D &rhs)
Multiply a coordinate by a scalar.

If any component of the resulting value is not a whole number, it is truncated following the same rules as
int.

Class GridDomain

• Defined in file_include_kami_grid.h

Inheritance Relationships

Base Type

• public kami::Domain (Class Domain)

28 Chapter 1. Overview

Kami, Release main

Derived Types

• public kami::Grid1D (Class Grid1D)

• public kami::Grid2D (Class Grid2D)

Class Documentation

class GridDomain : public kami::Domain
An abstract domain based on a gridded environment.

All gridded domains are expected to consist of cells in a rectilinear grid where the cells are equal size and laid
out in an ordered fashion.

Subclassed by kami::Grid1D, kami::Grid2D

Class Model

• Defined in file_include_kami_model.h

Inheritance Relationships

Base Type

• public std::enable_shared_from_this< Model >

Derived Type

• public kami::ReporterModel (Class ReporterModel)

Class Documentation

class Model : public std::enable_shared_from_this<Model>
An abstract for generic models.

See also:

ReporterModel

Subclassed by kami::ReporterModel

1.1. Design Objectives 29

Kami, Release main

Public Functions

std::shared_ptr<Domain> get_domain()
Get the Domain associated with this model.

Returns a shared pointer to the Domain

std::shared_ptr<Domain> set_domain(std::shared_ptr<Domain> domain)
Add a Domain to this scheduler.

This method will associate a model with the scheduler.

Returns a shared pointer to the Domain

std::shared_ptr<Population> get_population()
Get the Population associated with this model.

Returns a shared pointer to the Population

std::shared_ptr<Population> set_population(std::shared_ptr<Population> population)
Add a Model to this scheduler.

This method will associate a model with the scheduler.

Returns a shared pointer to the Population

std::shared_ptr<Scheduler> get_scheduler()
Get the Scheduler associated with this model.

Returns a shared pointer to the Scheduler

std::shared_ptr<Scheduler> set_scheduler(std::shared_ptr<Scheduler> scheduler)
Add a Model to this scheduler.

This method will associate a model with the scheduler.

Returns a shared pointer to the Scheduler

virtual std::shared_ptr<Model> step()
Execute a single time step of the model.

This method will collect all the Agents in the Population associated with model and pass them to the
associated Scheduler for stepping.

Returns a shared pointer to the model instance

Protected Attributes

std::shared_ptr<Domain> _domain = nullptr
Reference copy of the Domain

std::shared_ptr<Population> _pop = nullptr
Reference copy of the Population

std::shared_ptr<Scheduler> _sched = nullptr
Reference copy of the Scheduler

30 Chapter 1. Overview

Kami, Release main

Class MultiGrid1D

• Defined in file_include_kami_multigrid1d.h

Inheritance Relationships

Base Type

• public kami::Grid1D (Class Grid1D)

Class Documentation

class MultiGrid1D : public kami::Grid1D
A one-dimensional grid where each cell may contain multiple agents.

The grid is linear and may wrap around in its only dimension.

See also:

Grid1D

See also:

SoloGrid1D

Public Functions

MultiGrid1D(unsigned int maximum_x, bool wrap_x)
Constructor.

Parameters

• maximum_x – [in] the length of the grid.

• wrap_x – [in] should the grid wrap around on itself.

virtual AgentID add_agent(AgentID agent_id, const GridCoord1D &coord) override
Place agent on the grid at the specified location.

Parameters

• agent_id – [in] the AgentID of the agent to add.

• coord – [in] the coordinates of the agent.

Returns false if the agent is not placed at the specified location, otherwise, true

1.1. Design Objectives 31

Kami, Release main

Class MultiGrid2D

• Defined in file_include_kami_multigrid2d.h

Inheritance Relationships

Base Type

• public kami::Grid2D (Class Grid2D)

Class Documentation

class MultiGrid2D : public kami::Grid2D
A two-dimensional grid where each cell may contain multiple agents.

The grid is linear and may wrap around in either dimension.

See also:

Grid2D

See also:

SoloGrid2D

Public Functions

MultiGrid2D(unsigned int maximum_x, unsigned int maximum_y, bool wrap_x, bool wrap_y)
Constructor.

Parameters

• maximum_x – [in] the length of the grid in the first dimension

• maximum_y – [in] the length of the grid in the second dimension

• wrap_x – [in] should the grid wrap around on itself in the first dimension

• wrap_y – [in] should the grid wrap around on itself in the second dimension

virtual AgentID add_agent(AgentID agent_id, const GridCoord2D &coord) override
Place agent on the grid at the specified location.

Parameters

• agent_id – [in] the AgentID of the agent to add.

• coord – [in] the coordinates of the agent.

Returns the AgentID of the agent added

32 Chapter 1. Overview

Kami, Release main

Class Population

• Defined in file_include_kami_population.h

Class Documentation

class Population
An abstract for generic models.

Public Functions

std::shared_ptr<Agent> get_agent_by_id(AgentID agent_id) const
Get a reference to an Agent by AgentID

Parameters agent_id – [in] the AgentID to search for.

Returns a reference to the desired Agent or nothing is not found

AgentID add_agent(const std::shared_ptr<Agent> &agent) noexcept
Add an Agent to the Population.

Parameters agent – The Agent to add.

Returns the ID of the agent added

std::shared_ptr<Agent> delete_agent(AgentID agent_id)
Remove an Agent from the Population.

Parameters agent_id – The AgentID of the agent to remove.

Returns a shared pointer to the Agent deleted

std::unique_ptr<std::vector<AgentID>> get_agent_list() const
Returns the agent list.

Returns a std::vector of all the AgentID’s in the Population

Protected Attributes

std::map<kami::AgentID, std::shared_ptr<Agent>> _agent_map
A mapping of AgentID to Agent pointers.

This is the mapping of all AgentIDs to pointers to the corresponding Agent in this population. This is left
exposed as protected should any subclass wish to manipulate this mapping directly.

1.1. Design Objectives 33

Kami, Release main

Class RandomScheduler

• Defined in file_include_kami_random.h

Inheritance Relationships

Base Types

• public kami::SequentialScheduler (Class SequentialScheduler)

• private std::enable_shared_from_this< RandomScheduler >

Class Documentation

class RandomScheduler : public kami::SequentialScheduler, private
std::enable_shared_from_this<RandomScheduler>

Will execute all agent steps in a random order.

A random scheduler will iterate over the agents assigned to the scheduler and call their step() function in a
random order. That order should be different for each subsequent call to step(), but is not guaranteed not to
repeat.

Public Functions

RandomScheduler() = default
Constructor.

explicit RandomScheduler(std::shared_ptr<std::mt19937> rng)
Constructor.

Parameters rng – [in] A uniform random number generator of type std::mt19937, used as the
source of randomness.

virtual std::unique_ptr<std::vector<AgentID>> step(std::shared_ptr<Model> model,
std::unique_ptr<std::vector<AgentID>> agent_list)
override

Execute a single time step.

This method will randomize the list of Agents provided then execute the Agent::step()method for every
Agent listed.

Parameters

• model – a reference copy of the model

• agent_list – list of agents to execute the step

Returns returns vector of agents successfully stepped

virtual std::unique_ptr<std::vector<AgentID>> step(std::shared_ptr<ReporterModel> model,
std::unique_ptr<std::vector<AgentID>> agent_list)
override

34 Chapter 1. Overview

Kami, Release main

Execute a single time step for a ReporterModel

This method will randomize the list of Agents provided then execute the Agent::step()method for every
Agent listed.

Parameters

• model – a reference copy of the ReporterModel

• agent_list – list of agents to execute the step

Returns returns vector of agents successfully stepped

std::shared_ptr<std::mt19937> set_rng(std::shared_ptr<std::mt19937> rng)
Set the RNG.

Set the random number generator used to randomize the order of agent stepping.

Parameters rng – [in] A uniform random number generator of type std::mt19937, used as the
source of randomness.

Returns a shared pointer to the random number generator

std::shared_ptr<std::mt19937> get_rng()
Get the RNG.

Get a reference to the random number generator used to randomize the order of agent stepping.

Class Reporter

• Defined in file_include_kami_reporter.h

Inheritance Relationships

Base Type

• public std::enable_shared_from_this< Reporter >

Class Documentation

class Reporter : public std::enable_shared_from_this<Reporter>
A Reporter is a module that works with ReporterAgent and ReporterModel to collect information about
the state of the model for later analysis.

1.1. Design Objectives 35

Kami, Release main

Public Functions

Reporter()

Constructor.

std::shared_ptr<Reporter> clear()
Empty the report.

Clear all entries from the report; new collection operations begin with a blank slate.

Returns a reference copy of the Reporter

std::unique_ptr<nlohmann::json> collect(const std::shared_ptr<ReporterModel> &model)
Collect the current state of the model.

This will collect the current state of each agent associated with the population returned by the Model’s
get_population().

Parameters model – reference copy of the model

Returns a copy of the current report

std::unique_ptr<nlohmann::json> collect(const std::shared_ptr<ReporterModel> &model, const
std::shared_ptr<Population> &pop)

Collect the current state of the model.

This will collect the current state of each agent associated with the Population.

Parameters

• model – reference copy of the model

• pop – Population to collect on

Returns a copy of the current report

std::unique_ptr<nlohmann::json> collect(const std::shared_ptr<ReporterModel> &model, const
std::unique_ptr<std::vector<AgentID>> &agent_list)

Collect the current state of the model.

This will collect the current state of each agent given

Parameters

• model – reference copy of the model

• agent_list – a vector agents to report on

Returns a copy of the current report

std::unique_ptr<nlohmann::json> report(const std::shared_ptr<ReporterModel> &model)
Collect the report.

This will return the aggregate report of all the data collected by this Reporter.

Parameters model – reference copy of the model

Returns a copy of the current report

36 Chapter 1. Overview

Kami, Release main

Protected Attributes

std::unique_ptr<std::vector<nlohmann::json>> _report_data = nullptr
A vector of the the report collected so far.

Class ReporterAgent

• Defined in file_include_kami_reporter.h

Inheritance Relationships

Base Type

• public kami::Agent (Class Agent)

Class Documentation

class ReporterAgent : public kami::Agent
A superclass for all reporting agents.

All reporting agents should subclass the ReportingAgent class. At a minimum, subclasses must implement the
step() function, to execute a single time step for each agent.

See also:

Agent, StagedAgent

Public Functions

virtual std::unique_ptr<nlohmann::json> collect() = 0
Collect the current state of the agent.

This function should collect the agent’s current state. The agent, notably, does not need to collect historical
state, as the historical state is retained by the Reporter instance until such time as Reporter::report()
is called. However, the implementation of the collect() function is up to the end user who can, ultimately,
return whatever they want.

The only restriction on collect is that it must return its data as a nlohmann::json JSON object. See Reporter
for additional details.

virtual AgentID step(std::shared_ptr<ReporterModel> model) = 0
Execute a time-step for the agent.

This function should step the agent instance. Any activities that the agent should perform as part of its time
step should be in this function.

Parameters model – a reference copy of the model

Returns a copy of the AgentID

1.1. Design Objectives 37

https://json.nlohmann.me/

Kami, Release main

Class ReporterModel

• Defined in file_include_kami_reporter.h

Inheritance Relationships

Base Type

• public kami::Model (Class Model)

Class Documentation

class ReporterModel : public kami::Model
An abstract for generic models with a reporting capability.

See also:

Model

Public Functions

ReporterModel()

Constructor.

virtual std::unique_ptr<nlohmann::json> collect() = 0
Collect the current state of the model.

This function should collect the model’s current state. The model, notably, does not need to collect historical
state, as the historical state is retained by the Reporter instance until such time as Reporter::report()
is called. However, the implementation of the collect() function is up to the end user who can, ultimately,
return whatever they want.

This is not expected to return agent data collection, as the agents’ information is collected separately.

virtual unsigned int get_step_id()
Get the step id of the model.

The step_id should probably be a monotonically incrementing integer.

virtual std::shared_ptr<Model> step() override
Execute a single time step of the model.

This method will collect all the Agents in the Population associated with the model and pass them to the
associated Scheduler for stepping. After scheduling, this method will run the collect() for the Reporter
associated with this model.

Returns a shared pointer to the model instance

std::unique_ptr<nlohmann::json> report()
Get the current report.

This method will return an object containg the data collected to that point in the simulation.

Returns a unique pointer to a nlohmann::json object representing the current report

38 Chapter 1. Overview

Kami, Release main

Protected Attributes

std::shared_ptr<Reporter> _rpt
The current report.

unsigned int _step_count = {}
The model’s current step count.

Class Scheduler

• Defined in file_include_kami_scheduler.h

Inheritance Relationships

Derived Type

• public kami::SequentialScheduler (Class SequentialScheduler)

Class Documentation

class Scheduler
Create a Kami scheduler.

Schedulers are responsible for executing each time step in the model. A scheduler will have a collection of agents
assigned to it and will execute the step function for each agent based on the type of scheduling implemented.

Subclassed by kami::SequentialScheduler

Public Functions

virtual std::unique_ptr<std::vector<AgentID>> step(std::shared_ptr<Model> model) = 0
Execute a single time step.

This method will step through the list of Agents in the Population associated with model and then execute
the Agent::step() method for every Agent assigned to this scheduler in the order assigned.

Parameters model – a reference copy of the model

Returns returns vector of agents successfully stepped

virtual std::unique_ptr<std::vector<AgentID>> step(std::shared_ptr<ReporterModel> model) = 0
Execute a single time step for a ReporterModel

This method will step through the list of Agents in the scheduler’s internal queue and then execute the
Agent::step() method for every Agent assigned to this scheduler in the order assigned.

Parameters model – a reference copy of the ReporterModel

Returns returns vector of agents successfully stepped

1.1. Design Objectives 39

Kami, Release main

virtual std::unique_ptr<std::vector<AgentID>> step(std::shared_ptr<Model> model,
std::unique_ptr<std::vector<AgentID>> agent_list) = 0

Execute a single time step.

This method will step through the list of Agents provided and then execute the Agent::step() method
for every Agent assigned to this scheduler in the order assigned.

Parameters

• model – a reference copy of the model

• agent_list – list of agents to execute the step

Returns returns vector of agents successfully stepped

virtual std::unique_ptr<std::vector<AgentID>> step(std::shared_ptr<ReporterModel> model,
std::unique_ptr<std::vector<AgentID>> agent_list) = 0

Execute a single time step for a ReporterModel

This method will step through the list of Agents in the scheduler’s internal queue and then execute the
Agent::step() method for every Agent assigned to this scheduler in the order assigned.

Parameters

• model – a reference copy of the ReporterModel

• agent_list – list of agents to execute the step

Returns returns vector of agents successfully stepped

Protected Attributes

int _step_counter = 0
Counter to increment on each step

Class SequentialScheduler

• Defined in file_include_kami_sequential.h

Inheritance Relationships

Base Type

• public kami::Scheduler (Class Scheduler)

40 Chapter 1. Overview

Kami, Release main

Derived Types

• public kami::RandomScheduler (Class RandomScheduler)

• public kami::StagedScheduler (Class StagedScheduler)

Class Documentation

class SequentialScheduler : public kami::Scheduler
Will execute all agent steps in a sequential order.

A sequential scheduler will iterate over the agents assigned to the scheduler and call their step() function in
a sequential order. That order is preserved between calls to step() but may be modified by addAgent() or
deleteAgent().

Subclassed by kami::RandomScheduler, kami::StagedScheduler

Public Functions

virtual std::unique_ptr<std::vector<AgentID>> step(std::shared_ptr<Model> model) override
Execute a single time step.

This method will step through the list of Agents in the scheduler’s internal queue and then execute the
Agent::step() method for every Agent assigned to this scheduler in the order assigned.

Parameters model – a reference copy of the model

Returns returns vector of agents successfully stepped

virtual std::unique_ptr<std::vector<AgentID>> step(std::shared_ptr<ReporterModel> model) override
Execute a single time step for a ReporterModel

This method will step through the list of Agents in the scheduler’s internal queue and then execute the
Agent::step() method for every Agent assigned to this scheduler in the order assigned.

Parameters model – a reference copy of the ReporterModel

Returns returns vector of agents successfully stepped

virtual std::unique_ptr<std::vector<AgentID>> step(std::shared_ptr<Model> model,
std::unique_ptr<std::vector<AgentID>> agent_list)
override

Execute a single time step.

This method will step through the list of Agents provided and then execute the Agent::step() method
for every Agent assigned to this scheduler in the order assigned.

Parameters

• model – a reference copy of the model

• agent_list – list of agents to execute the step

Returns returns vector of agents successfully stepped

1.1. Design Objectives 41

Kami, Release main

virtual std::unique_ptr<std::vector<AgentID>> step(std::shared_ptr<ReporterModel> model,
std::unique_ptr<std::vector<AgentID>> agent_list)
override

Execute a single time step for a ReporterModel

This method will step through the list of Agents in the scheduler’s internal queue and then execute the
Agent::step() method for every Agent assigned to this scheduler in the order assigned.

Parameters

• model – a reference copy of the ReporterModel

• agent_list – list of agents to execute the step

Returns returns vector of agents successfully stepped

Class SoloGrid1D

• Defined in file_include_kami_sologrid1d.h

Inheritance Relationships

Base Type

• public kami::Grid1D (Class Grid1D)

Class Documentation

class SoloGrid1D : public kami::Grid1D
A one-dimensional grid where each cell may contain one agents.

The grid is linear and may wrap around in its only dimension.

See also:

Grid1D

See also:

MultiGrid1D

Public Functions

SoloGrid1D(unsigned int maximum_x, bool wrap_x)
Constructor.

Parameters

• maximum_x – [in] the length of the grid.

• wrap_x – [in] should the grid wrap around on itself.

42 Chapter 1. Overview

Kami, Release main

virtual AgentID add_agent(AgentID agent_id, const GridCoord1D &coord) override
Place agent on the grid at the specified location.

Parameters

• agent_id – [in] the AgentID of the agent to add.

• coord – [in] the coordinates of the agent.

Returns false if the agent is not placed at the specified location, otherwise, true

Class SoloGrid2D

• Defined in file_include_kami_sologrid2d.h

Inheritance Relationships

Base Type

• public kami::Grid2D (Class Grid2D)

Class Documentation

class SoloGrid2D : public kami::Grid2D
A two-dimensional grid where each cell may contain multiple agents.

The grid is linear and may wrap around in either dimension.

See also:

Grid2D

See also:

MultiGrid2D

Public Functions

SoloGrid2D(unsigned int maximum_x, unsigned int maximum_y, bool wrap_x, bool wrap_y)
Constructor

Parameters

• maximum_x – [in] the length of the grid in the first dimension

• maximum_y – [in] the length of the grid in the second dimension

• wrap_x – [in] should the grid wrap around on itself in the first dimension

• wrap_y – [in] should the grid wrap around on itself in the second dimension

1.1. Design Objectives 43

Kami, Release main

virtual AgentID add_agent(AgentID agent_id, const GridCoord2D &coord) override
Place agent on the grid at the specified location.

Parameters

• agent_id – [in] the AgentID of the agent to add.

• coord – [in] the coordinates of the agent.

Returns false if the agent is not placed at the specified location, otherwise, true

Class StagedAgent

• Defined in file_include_kami_agent.h

Inheritance Relationships

Base Type

• public kami::Agent (Class Agent)

Class Documentation

class StagedAgent : public kami::Agent
A superclass for all staged agents.

Staged agents use a two-phase step to allow agents to take actions without updating the state of the model before
all agents have been allowed to update. All work necessary to advance the StagedAgent state should take place
in the step() function. However, the StagedAgent should not actually update the state, and instead save the
results for later use. Finally, during the advance() stage, the StagedAgent state should update.

StagedAgents must implement both the step() and advance() functions.

Public Functions

virtual AgentID advance(std::shared_ptr<Model> model) = 0
Post-step advance the agent.

This method should be called after step(). Any updates or cleanups to the agent that must happen for the
StagedAgent to complete its step must happen here.

Parameters model – a reference copy of the model

44 Chapter 1. Overview

Kami, Release main

Class StagedScheduler

• Defined in file_include_kami_staged.h

Inheritance Relationships

Base Type

• public kami::SequentialScheduler (Class SequentialScheduler)

Class Documentation

class StagedScheduler : public kami::SequentialScheduler
Will execute all agent steps in a sequential order.

A sequential scheduler will iterate over the agents assigned to the scheduler and call their step() function in
a sequential order. That order is preserved between calls to step() but may be modified by add_agent() or
delete_agent().

Public Functions

virtual std::unique_ptr<std::vector<AgentID>> step(std::shared_ptr<Model> model,
std::unique_ptr<std::vector<AgentID>> agent_list)
override

Execute a single time step.

This method will step through the list of Agents in the scheduler’s internal queue and execute the
Agent::step()method for each Agent in the same order. Finally, it will execute the Agent::advance()
method for each Agent in the same order.

Parameters

• model – a reference copy of the model

• agent_list – list of agents to execute the step

Returns returns vector of agents successfully stepped

virtual std::unique_ptr<std::vector<AgentID>> step(std::shared_ptr<ReporterModel> model,
std::unique_ptr<std::vector<AgentID>> agent_list)
override

Execute a single time step for a ReporterModel

This method will step through the list of Agents in the scheduler’s internal queue and then execute the
Agent::step() method for every Agent assigned to this scheduler in the order assigned.

Parameters

• model – a reference copy of the ReporterModel

• agent_list – list of agents to execute the step

Returns returns vector of agents successfully stepped

1.1. Design Objectives 45

Kami, Release main

Enums

Enum GridDistanceType

• Defined in file_include_kami_grid.h

Enum Documentation

enum kami::GridDistanceType
Distance types for orthogonal grid domains.

Values:

enumerator Euclidean
Euclidean distance.

The Euclidean distance is the length of the line segment connecting two points. This is commonly called a
“beeline” or “as the crow flies.”

enumerator Manhattan
Manhattan distance.

The Manhattan distance is the sum of the absolute value of the differences of the elements. This is com-
monly called the “taxicab distance,” “rectilinear distance,” or many other formal names.

enumerator Chebyshev
Chebyshev distance.

The Chebyshev distance, also called the “chessboard” distance is the number of single point jumps neces-
sary to move from one point to the next. This can be likened to a king on a chessboard and the number of
moves necessary to move from a given point to any other given point.

Enum GridNeighborhoodType

• Defined in file_include_kami_grid.h

Enum Documentation

enum kami::GridNeighborhoodType
Neighborhood types for orthogonal grid domains of cells.

Orthogonal grid domains are those that provide cells equidistant along a standard Cartesian grid.
GridNeighborhoodType allows for the distinction between those neighborhoods that include those cells touch-
ing on the corners or diagonally and those neighborhoods that do not.

Values:

46 Chapter 1. Overview

https://en.wikipedia.org/wiki/Taxicab_geometry

Kami, Release main

enumerator Moore
Moore neighborhood.

Moore neighborhood types include diagonally-adjacent cells as neighbors.

enumerator VonNeumann
Von Neumann neighborhood.

Von Neumann neighborhood types do not include diagonally-adjacent cells as neighbors.

Functions

Function kami::get_version

• Defined in file_include_kami_kami.h

Function Documentation

inline semver::version kami::get_version()
Get the current version of Kami.

Returns a semver::version object containing version information

Typedefs

Typedef kami::Position

• Defined in file_include_kami_position.h

Typedef Documentation

typedef std::variant<GridCoord1D, GridCoord2D> kami::Position

1.1.5 Examples

• bankreserves

• boltzmann1d

• boltzmann2d

• starter

1.1. Design Objectives 47

bankreserves.html
boltzmann1d.html
boltzmann2d.html
starter.html

Kami, Release main

bankreserves

This example provides a two-dimensional bank reserves model (BSM) as an example of a simple application of the
reporter classes for monitoring the internal functioning of the model.

The BSM is a type of computational model that simulates the behavior of customers and their interactions with a bank.
It is used to study the dynamics of the money supply and the management of reserves by the bank.

In a BSM, individuals are represented as autonomous agents that make decisions about saving, borrowing, and repaying
loans based on their individual objectives and constraints. The bank is also represented as an agent that maintains
accounts for each individual. The interactions between individuals and the bank are simulated over time, and the
model can be used to study the effects of different reserve requirements policies on the creation of money, borrowing,
lending, and savings.

One of the main advantages of a BSM is that it allows for the examination of the micro-level interactions between
individuals and the bank, which can provide a more detailed understanding of the dynamics of the monetary system.

It is important to note that BSMs are a simplified representation of the real world and may not capture all the nuances
of the monetary system being studied. It’s also important to use this model in conjunction with other methods to fully
understand the monetary system.

Option Description
-c agent_count Set the number of agents
-f output_file_name Set the JSON report file
-l log_level_option Set the logging level
-n max_steps Set the number of steps to run the model
-s initial_seed Set the initial seed
-x x_size Set the number of columns
-y y_size Set the number of rows
-w max_initial_wealth Set the maximum initial agent wealth

boltzmann1d

This example provides a one-dimensional Boltzmann wealth model (BWM) as an example of a simple application of
the one-dimensional gridded system.

The BWM is a type of agent-based model used to study the distribution of wealth among individuals or agents within
a population. The model is named after the physicist Ludwig Boltzmann, who first proposed a similar model to study
the distribution of energy among particles in a gas.

In a BWM, agents are assigned a certain amount of wealth, and the model simulates their interactions over time. These
interactions can include buying and selling goods and services, lending and borrowing money, and inheriting wealth
from other agents.

The key feature of the BWM is that it incorporates a “wealth-exchange mechanism” which determines the probability of
agents making a wealth exchange with each other. This mechanism is often based on the difference in wealth between
agents, with wealthier agents more likely to make exchanges with other wealthy agents.

The model can be run for a specified number of time steps, and the resulting wealth distribution can be analyzed to
study the emergence of wealth inequality and the factors that contribute to it. The model can also be used to study the
effects of different policies or interventions on the wealth distribution.

The BWM has been used to study a variety of different economic systems, including capitalist, socialist, and feudal
systems. However, it is important to note that like other agent-based models, the BWM is a simplified representation
of the real world and may not capture all the nuances of the economic system being studied.

48 Chapter 1. Overview

Kami, Release main

Overall, the BWM is a useful tool for studying the distribution of wealth and the emergence of wealth inequality in a
population. It can provide insight into the factors that contribute to wealth inequality and the effects of different policies
on the distribution of wealth.

Option Description
-c agent_count Set the number of agents
-l log_level_option Set the logging level
-n max_steps Set the number of steps to run the model
-s initial_seed Set the initial seed
-x x_size Set the number of columns

boltzmann2d

This example provides a two-dimensional Boltzmann wealth model (BWM) as an example of a simple application of
the two-dimensional gridded system.

The BWM is a type of agent-based model used to study the distribution of wealth among individuals within a population.
The model simulates agents’ interactions over time, such as buying and selling goods, lending and borrowing money,
and inheriting wealth. The model is based on a “wealth-exchange mechanism” which determines the probability of
agents making a wealth exchange with each other, it is often based on the difference in wealth between agents. The
model can be run for a specified number of time steps, and the resulting wealth distribution can be analyzed to study
the emergence of wealth inequality and the factors that contribute to it.

For more information on BWMs, please see the boltzmann1d example documentation.

Option Description
-c agent_count Set the number of agents
-l log_level_option Set the logging level
-n max_steps Set the number of steps to run the model
-s initial_seed Set the initial seed
-x x_size Set the number of columns
-y y_size Set the number of rows

starter

This example provides a starter scaffold for beginning a new agent-based model (ABM). The agents and models perform
no real functions in the starter and is likely to be the most minimum functioning model.

Option Description
-c agent_count Set the number of agents
-l log_level_option Set the logging level
-n max_steps Set the number of steps to run the model
-s initial_seed Set the initial seed

1.1. Design Objectives 49

boltzmann1d.html

Kami, Release main

1.1.6 Changelog

Below is the consolidated changelog for Kami.

• : Added baseline for continuous domains

• : Streamlined documentation builds

• : Corrected bug in documentation build

• : Added distance measures to grid coordinate objects

• : Switched from ranlux24 to mt19937 due to speed

• : Added some useful constants, for use as random seeds

• : Added data collecting and reporting modules

• : Added Bank Reserves model to demonstrate reporting

• : Moved to exception-based error handling

• : Readded step() to the Model interface

• : Added documentation for each example

• : Added a minimal example and tutorial

• : Updated all support packages to most current versions

• : Revised interfaces to the grids

• : Removed step()/run() from Model interface

• : Completed basic unit tests

• : Added a to do list to the documentation

• : Added background info to READ ME

• : Completed initial unit tests

• : Added support semver versioning via neargye-semver

• : Restructured the entire interface

• : Added a barebones “starter” model to build from

• : Corrected the badge link in the README file

• : Make library static by default

• : Numerous build process cleanups

• : Numerous code cleanups to remove void returns and eliminate stored Model references

• : Numerous documentation cleanups

• : Fixed Changelog with current releases added

• : Fixed Changelog to move docs to support

• : Fixed README file links

• : Retagged previous versions using pure Semantic Versioning

• : Cleaned up numerous issues found by CLion’s linter

• : Added a changelog!

• : Documentation for kami::RandomScheduler

50 Chapter 1. Overview

Kami, Release main

• : Added basic installation instructions

• : Added a new overview to the documents

• : Initial public release.

1.1.7 To Do List

Must Dos

The list below is a list of things considered necessary before a 1.0 release. This list is not static.

• Network domain

• Hexgrid domain

• Continuous grid domain

Wishlist

The list below is a list of things considered nice to have at any point.

• Revise unit tests to take advantage of fixtures

• Network Boltzmann model example

• Additional examples as appropriate

• Globe domain, on sphere, with latitude and longitude

1.1.8 License

Copyright (c) 2020-2023 The Johns Hopkins University Applied Physics Laboratory LLC

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

1.1. Design Objectives 51

Kami, Release main

52 Chapter 1. Overview

INDEX

K
kami::Agent (C++ class), 9
kami::Agent::get_agent_id (C++ function), 9
kami::Agent::operator!= (C++ function), 9
kami::Agent::operator== (C++ function), 9
kami::Agent::step (C++ function), 9
kami::AgentID (C++ class), 10
kami::AgentID::AgentID (C++ function), 10
kami::AgentID::operator!= (C++ function), 11
kami::AgentID::operator== (C++ function), 11
kami::AgentID::operator< (C++ function), 11
kami::AgentID::operator<< (C++ function), 11
kami::AgentID::to_string (C++ function), 10
kami::Constants (C++ class), 12
kami::Constants::ADAMS_CONSTANT (C++ member),

12
kami::Constants::JENNYS_CONSTANT (C++ mem-

ber), 12
kami::Constants::JENNYS_NUMBER (C++ member),

12
kami::Coord (C++ class), 12
kami::Coord::operator<< (C++ function), 13
kami::Coord::to_string (C++ function), 13
kami::Domain (C++ class), 13
kami::Domain::Domain (C++ function), 13
kami::error::AgentNotFound (C++ class), 14
kami::error::AgentNotFound::AgentNotFound

(C++ function), 14
kami::error::LocationInvalid (C++ class), 14
kami::error::LocationInvalid::LocationInvalid

(C++ function), 15
kami::error::LocationUnavailable (C++ class),

15
kami::error::LocationUnavailable::LocationUnavailable

(C++ function), 15
kami::error::OptionInvalid (C++ class), 16
kami::error::OptionInvalid::OptionInvalid

(C++ function), 16
kami::error::ResourceNotAvailable (C++ class),

16
kami::error::ResourceNotAvailable::ResourceNotAvailable

(C++ function), 17

kami::get_version (C++ function), 47
kami::Grid1D (C++ class), 17
kami::Grid1D::_agent_grid (C++ member), 20
kami::Grid1D::_agent_index (C++ member), 20
kami::Grid1D::add_agent (C++ function), 18
kami::Grid1D::coord_wrap (C++ function), 20
kami::Grid1D::delete_agent (C++ function), 18
kami::Grid1D::directions (C++ member), 20
kami::Grid1D::get_location_by_agent (C++

function), 18
kami::Grid1D::get_location_contents (C++

function), 19
kami::Grid1D::get_maximum_x (C++ function), 19
kami::Grid1D::get_neighborhood (C++ function),

19
kami::Grid1D::get_wrap_x (C++ function), 19
kami::Grid1D::Grid1D (C++ function), 18
kami::Grid1D::is_location_empty (C++ function),

18
kami::Grid1D::is_location_valid (C++ function),

18
kami::Grid1D::move_agent (C++ function), 18
kami::Grid2D (C++ class), 21
kami::Grid2D::_agent_grid (C++ member), 24
kami::Grid2D::_agent_index (C++ member), 24
kami::Grid2D::add_agent (C++ function), 21
kami::Grid2D::coord_wrap (C++ function), 23
kami::Grid2D::delete_agent (C++ function), 21
kami::Grid2D::directions_moore (C++ member),

23
kami::Grid2D::directions_vonneumann (C++

member), 23
kami::Grid2D::get_location_by_agent (C++

function), 22
kami::Grid2D::get_location_contents (C++

function), 22
kami::Grid2D::get_maximum_x (C++ function), 23
kami::Grid2D::get_maximum_y (C++ function), 23
kami::Grid2D::get_neighborhood (C++ function),

22, 23
kami::Grid2D::get_wrap_x (C++ function), 22
kami::Grid2D::get_wrap_y (C++ function), 22

53

Kami, Release main

kami::Grid2D::Grid2D (C++ function), 21
kami::Grid2D::is_location_empty (C++ function),

22
kami::Grid2D::is_location_valid (C++ function),

22
kami::Grid2D::move_agent (C++ function), 21
kami::GridCoord (C++ class), 24
kami::GridCoord1D (C++ class), 25
kami::GridCoord1D::distance (C++ function), 25
kami::GridCoord1D::GridCoord1D (C++ function),

25
kami::GridCoord1D::operator!= (C++ function), 26
kami::GridCoord1D::operator* (C++ function), 26
kami::GridCoord1D::operator+ (C++ function), 26
kami::GridCoord1D::operator== (C++ function), 26
kami::GridCoord1D::operator- (C++ function), 26
kami::GridCoord1D::operator<< (C++ function), 26
kami::GridCoord1D::to_string (C++ function), 25
kami::GridCoord1D::x (C++ function), 25
kami::GridCoord2D (C++ class), 26
kami::GridCoord2D::distance (C++ function), 27
kami::GridCoord2D::distance_chebyshev (C++

function), 27
kami::GridCoord2D::distance_euclidean (C++

function), 27
kami::GridCoord2D::distance_manhattan (C++

function), 27
kami::GridCoord2D::GridCoord2D (C++ function),

27
kami::GridCoord2D::operator!= (C++ function), 28
kami::GridCoord2D::operator* (C++ function), 28
kami::GridCoord2D::operator+ (C++ function), 28
kami::GridCoord2D::operator== (C++ function), 28
kami::GridCoord2D::operator- (C++ function), 28
kami::GridCoord2D::operator<< (C++ function), 28
kami::GridCoord2D::to_string (C++ function), 27
kami::GridCoord2D::x (C++ function), 27
kami::GridCoord2D::y (C++ function), 27
kami::GridCoord::distance (C++ function), 25
kami::GridDistanceType (C++ enum), 46
kami::GridDistanceType::Chebyshev (C++ enu-

merator), 46
kami::GridDistanceType::Euclidean (C++ enu-

merator), 46
kami::GridDistanceType::Manhattan (C++ enu-

merator), 46
kami::GridDomain (C++ class), 29
kami::GridNeighborhoodType (C++ enum), 46
kami::GridNeighborhoodType::Moore (C++ enu-

merator), 46
kami::GridNeighborhoodType::VonNeumann (C++

enumerator), 47
kami::Model (C++ class), 29
kami::Model::_domain (C++ member), 30

kami::Model::_pop (C++ member), 30
kami::Model::_sched (C++ member), 30
kami::Model::get_domain (C++ function), 30
kami::Model::get_population (C++ function), 30
kami::Model::get_scheduler (C++ function), 30
kami::Model::set_domain (C++ function), 30
kami::Model::set_population (C++ function), 30
kami::Model::set_scheduler (C++ function), 30
kami::Model::step (C++ function), 30
kami::MultiGrid1D (C++ class), 31
kami::MultiGrid1D::add_agent (C++ function), 31
kami::MultiGrid1D::MultiGrid1D (C++ function),

31
kami::MultiGrid2D (C++ class), 32
kami::MultiGrid2D::add_agent (C++ function), 32
kami::MultiGrid2D::MultiGrid2D (C++ function),

32
kami::Population (C++ class), 33
kami::Population::_agent_map (C++ member), 33
kami::Population::add_agent (C++ function), 33
kami::Population::delete_agent (C++ function),

33
kami::Population::get_agent_by_id (C++ func-

tion), 33
kami::Population::get_agent_list (C++ func-

tion), 33
kami::Position (C++ type), 47
kami::RandomScheduler (C++ class), 34
kami::RandomScheduler::get_rng (C++ function),

35
kami::RandomScheduler::RandomScheduler (C++

function), 34
kami::RandomScheduler::set_rng (C++ function),

35
kami::RandomScheduler::step (C++ function), 34
kami::Reporter (C++ class), 35
kami::Reporter::_report_data (C++ member), 37
kami::Reporter::clear (C++ function), 36
kami::Reporter::collect (C++ function), 36
kami::Reporter::report (C++ function), 36
kami::Reporter::Reporter (C++ function), 36
kami::ReporterAgent (C++ class), 37
kami::ReporterAgent::collect (C++ function), 37
kami::ReporterAgent::step (C++ function), 37
kami::ReporterModel (C++ class), 38
kami::ReporterModel::_rpt (C++ member), 39
kami::ReporterModel::_step_count (C++ mem-

ber), 39
kami::ReporterModel::collect (C++ function), 38
kami::ReporterModel::get_step_id (C++ func-

tion), 38
kami::ReporterModel::report (C++ function), 38
kami::ReporterModel::ReporterModel (C++ func-

tion), 38

54 Index

Kami, Release main

kami::ReporterModel::step (C++ function), 38
kami::Scheduler (C++ class), 39
kami::Scheduler::_step_counter (C++ member),

40
kami::Scheduler::step (C++ function), 39, 40
kami::SequentialScheduler (C++ class), 41
kami::SequentialScheduler::step (C++ function),

41
kami::SoloGrid1D (C++ class), 42
kami::SoloGrid1D::add_agent (C++ function), 42
kami::SoloGrid1D::SoloGrid1D (C++ function), 42
kami::SoloGrid2D (C++ class), 43
kami::SoloGrid2D::add_agent (C++ function), 43
kami::SoloGrid2D::SoloGrid2D (C++ function), 43
kami::StagedAgent (C++ class), 44
kami::StagedAgent::advance (C++ function), 44
kami::StagedScheduler (C++ class), 45
kami::StagedScheduler::step (C++ function), 45

Index 55

	Overview
	Design Objectives
	Installation
	Requirements
	Compiling
	Conan Installation (Local)

	About Agent-Based Models
	Tutorial
	Model Form
	A Minimal ABM

	Library API
	Class Hierarchy
	File Hierarchy
	Full API
	Namespaces
	Namespace kami
	Namespaces
	Classes
	Enums
	Functions
	Typedefs
	Namespace kami::error
	Classes

	Classes and Structs
	Class Agent
	Inheritance Relationships
	Derived Types
	Class Documentation
	Class AgentID
	Class Documentation
	Class Constants
	Class Documentation
	Class Coord
	Inheritance Relationships
	Derived Type
	Class Documentation
	Class Domain
	Inheritance Relationships
	Derived Type
	Class Documentation
	Class AgentNotFound
	Inheritance Relationships
	Base Type
	Class Documentation
	Class LocationInvalid
	Inheritance Relationships
	Base Type
	Class Documentation
	Class LocationUnavailable
	Inheritance Relationships
	Base Type
	Class Documentation
	Class OptionInvalid
	Inheritance Relationships
	Base Type
	Class Documentation
	Class ResourceNotAvailable
	Inheritance Relationships
	Base Type
	Class Documentation
	Class Grid1D
	Inheritance Relationships
	Base Type
	Derived Types
	Class Documentation
	Class Grid2D
	Inheritance Relationships
	Base Type
	Derived Types
	Class Documentation
	Class GridCoord
	Inheritance Relationships
	Base Type
	Derived Types
	Class Documentation
	Class GridCoord1D
	Inheritance Relationships
	Base Type
	Class Documentation
	Class GridCoord2D
	Inheritance Relationships
	Base Type
	Class Documentation
	Class GridDomain
	Inheritance Relationships
	Base Type
	Derived Types
	Class Documentation
	Class Model
	Inheritance Relationships
	Base Type
	Derived Type
	Class Documentation
	Class MultiGrid1D
	Inheritance Relationships
	Base Type
	Class Documentation
	Class MultiGrid2D
	Inheritance Relationships
	Base Type
	Class Documentation
	Class Population
	Class Documentation
	Class RandomScheduler
	Inheritance Relationships
	Base Types
	Class Documentation
	Class Reporter
	Inheritance Relationships
	Base Type
	Class Documentation
	Class ReporterAgent
	Inheritance Relationships
	Base Type
	Class Documentation
	Class ReporterModel
	Inheritance Relationships
	Base Type
	Class Documentation
	Class Scheduler
	Inheritance Relationships
	Derived Type
	Class Documentation
	Class SequentialScheduler
	Inheritance Relationships
	Base Type
	Derived Types
	Class Documentation
	Class SoloGrid1D
	Inheritance Relationships
	Base Type
	Class Documentation
	Class SoloGrid2D
	Inheritance Relationships
	Base Type
	Class Documentation
	Class StagedAgent
	Inheritance Relationships
	Base Type
	Class Documentation
	Class StagedScheduler
	Inheritance Relationships
	Base Type
	Class Documentation

	Enums
	Enum GridDistanceType
	Enum Documentation
	Enum GridNeighborhoodType
	Enum Documentation

	Functions
	Function kami::get_version
	Function Documentation

	Typedefs
	Typedef kami::Position
	Typedef Documentation

	Examples
	bankreserves
	boltzmann1d
	boltzmann2d
	starter

	Changelog
	To Do List
	Must Dos
	Wishlist

	License

	Index

